std/math
Globals
const E: f64
const Pi: f64
const Phi: f64
const Sqrt2: f64
const SqrtE: f64
const SqrtPi: f64
const SqrtPhi: f64
const Ln2: f64
const Log2E: f64
const Ln10: f64
const Log10E: f64
Functions
fn Abs(x: f64): f64
Returns the absolute value of x.
Special cases are:
Abs(±Inf) = +Inf
Abs(NaN) = NaN
fn Acosh(mut x: f64): f64
Returns the inverse hyperbolic cosine of x.
Special cases are:
Acosh(+Inf) = +Inf
Acosh(x) = NaN if x < 1
Acosh(NaN) = NaN
fn Asin(mut x: f64): f64
Returns the arcsine, in radians, of x.
Special cases are:
Asin(±0) = ±0
Asin(x) = NaN if x < -1 or x > 1
fn Acos(x: f64): f64
Returns the arccosine, in radians, of x.
Special cases are:
Acos(x) = NaN if x < -1 or x > 1
fn Asinh(mut x: f64): f64
Returns the inverse hyperbolic sine of x.
Special cases are:
Asinh(±0) = ±0
Asinh(±Inf) = ±Inf
Asinh(NaN) = NaN
fn Atan(x: f64): f64
Returns the arctangent, in radians, of x.
Special cases are:
Atan(±0) = ±0
Atan(±Inf) = ±Pi/2
fn Atan2(y: f64, x: f64): f64
Returns the arc tangent of y/x, using the signs of the two to determine the quadrant of the return value.
Special cases are:
Atan2(y, NaN) = NaN
Atan2(NaN, x) = NaN
Atan2(+0, x>=0) = +0
Atan2(-0, x>=0) = -0
Atan2(+0, x<=-0) = +Pi
Atan2(-0, x<=-0) = -Pi
Atan2(y>0, 0) = +Pi/2
Atan2(y<0, 0) = -Pi/2
Atan2(+Inf, +Inf) = +Pi/4
Atan2(-Inf, +Inf) = -Pi/4
Atan2(+Inf, -Inf) = 3Pi/4
Atan2(-Inf, -Inf) = -3Pi/4
Atan2(y, +Inf) = 0
Atan2(y>0, -Inf) = +Pi
Atan2(y<0, -Inf) = -Pi
Atan2(+Inf, x) = +Pi/2
Atan2(-Inf, x) = -Pi/2
fn Atanh(mut x: f64): f64
Returns the inverse hyperbolic tangent of x.
Special cases are:
Atanh(1) = +Inf
Atanh(±0) = ±0
Atanh(-1) = -Inf
Atanh(x) = NaN if x < -1 or x > 1
Atanh(NaN) = NaN
fn NaN(): f64
Returns an IEEE 754 “not-a-number” value.
fn IsNaN(f: f64): bool
Reports whether f is an IEEE 754 “not-a-number” value.
fn IsNaN(f: f64): bool
Returns positive infinity if sign >= 0, negative infinity if !sign < 0.
fn IsInf(f: f64, sign: int): bool
Reports whether f is an infinity, according to sign.
If sign > 0, IsInf reports whether f is positive infinity.
If sign < 0, IsInf reports whether f is negative infinity.
If sign == 0, IsInf reports whether f is either infinity.
fn Cbrt(mut x: f64): f64
Returns the cube root of x.
Special cases are:
Cbrt(±0) = ±0
Cbrt(±Inf) = ±Inf
Cbrt(NaN) = NaN
fn Copysign(f: f64, sign: f64): f64
Returns a value with the magnitude of f and the sign of sign.
fn Dim(x: f64, y: f64): f64
Returns the maximum of x-y or 0.
Special cases are:
Dim(+Inf, +Inf) = NaN
Dim(-Inf, -Inf) = NaN
Dim(x, NaN) = Dim(NaN, x) = NaN
fn Max(x: f64, y: f64): f64
Returns the larger of x or y.
Special cases are:
Max(x, +Inf) = Max(+Inf, x) = +Inf
Max(x, NaN) = Max(NaN, x) = NaN
Max(+0, ±0) = Max(±0, +0) = +0
Max(-0, -0) = -0
fn Min(x: f64, y: f64): f64
Returns the smaller of x or y.
Special cases are:
Min(x, -Inf) = Min(-Inf, x) = -Inf
Min(x, NaN) = Min(NaN, x) = NaN
Min(-0, ±0) = Min(±0, -0) = -0
fn Erf(mut x: f64): f64
Returns the error function of x.
Special cases are:
Erf(+Inf) = 1
Erf(-Inf) = -1
Erf(NaN) = NaN
fn Erfinv(mut x: f64): f64
Returns the inverse error function of x.
Special cases are:
Erfinv(1) = +Inf
Erfinv(-1) = -Inf
Erfinv(x) = NaN if x < -1 or x > 1
Erfinv(NaN) = NaN
fn Erfcinv(x: f64): f64
Returns the inverse of Erfc(x).
Special cases are:
Erfcinv(0) = +Inf
Erfcinv(2) = -Inf
Erfcinv(x) = NaN if x < 0 or x > 2
Erfcinv(NaN) = NaN
fn Erfc(mut x: f64): f64
Returns the complementary error function of x.
Special cases are:
Erfc(+Inf) = 0
Erfc(-Inf) = 2
Erfc(NaN) = NaN
fn Exp(x: f64): f64
Returns e**x, the base-e exponential of x.
Special cases are:
Exp(+Inf) = +Inf
Exp(NaN) = NaN
WARNING
- Very large values overflow to 0 or Inf.
- Very small values underflow to 1.
fn Exp2(x: f64): f64
Returns 2**x, the base-2 exponential of x. Special cases are the same as Exp.
fn Expm1(mut x: f64): f64
Returns e**x - 1, the base-e exponential of x minus 1. It is more accurate than Exp(x) - 1 when x is near zero.
Special cases are:
Expm1(+Inf) = +Inf
Expm1(-Inf) = -1
Expm1(NaN) = NaN
WARNING
Very large values overflow to -1 or Inf.
fn Floor(x: f64): f64
Returns the greatest integer value less than or equal to x.
Special cases are:
Floor(±0) = ±0
Floor(±Inf) = ±Inf
Floor(NaN) = NaN
fn FMA(x: f64, y: f64, z: f64): f64
Returns x * y + z, computed with only one rounding. (That is, FMA returns the fused multiply-add of x, y, and z.)
fn Frexp(mut f: f64): (Frac: f64, Exp: int)
Breaks f into a normalized fraction and an integral power of two. It returns Frac and Exp satisfying f == Frac × 2**Exp, with the absolute value of Frac in the interval [½, 1)
.
Special cases are:
Frexp(±0) = ±0, 0
Frexp(±Inf) = ±Inf, 0
Frexp(NaN) = NaN, 0
fn Gamma(x: f64): f64
Returns the Gamma function of x.
Special cases are:
Gamma(+Inf) = +Inf
Gamma(+0) = +Inf
Gamma(-0) = -Inf
Gamma(x) = NaN for integer x < 0
Gamma(-Inf) = NaN
Gamma(NaN) = NaN
fn Ceil(x: f64): f64
Returns the least integer value greater than or equal to x.
Special cases are:
Ceil(±0) = ±0
Ceil(±Inf) = ±Inf
Ceil(NaN) = NaN
fn Trunc(x: f64): f64
Returns the integer value of x.
Special cases are:
Trunc(±0) = ±0
Trunc(±Inf) = ±Inf
Trunc(NaN) = NaN
fn Round(x: f64): f64
Returns the nearest integer, rounding half away from zero.
Special cases are:
Round(±0) = ±0
Round(±Inf) = ±Inf
Round(NaN) = NaN
fn RoundEven(x: f64): f64
Returns the nearest integer, rounding ties to even.
Special cases are:
RoundEven(±0) = ±0
RoundEven(±Inf) = ±Inf
RoundEven(NaN) = NaN
fn Hypot(mut p: f64, mut q: f64): f64
Returns Sqrt(pp + qq), taking care to avoid unnecessary overflow and underflow.
Special cases are:
Hypot(±Inf, q) = +Inf
Hypot(p, ±Inf) = +Inf
Hypot(NaN, q) = NaN
Hypot(p, NaN) = NaN
fn J0(mut x: f64): f64
Returns the order-zero Bessel function of the first kind.
Special cases are:
J0(±Inf) = 0
J0(0) = 1
J0(NaN) = NaN
fn Y0(x: f64): f64
Returns the order-zero Bessel function of the second kind.
Special cases are:
Y0(+Inf) = 0
Y0(0) = -Inf
Y0(x < 0) = NaN
Y0(NaN) = NaN
fn J1(mut x: f64): f64
Returns the order-one Bessel function of the first kind.
Special cases are:
J1(±Inf) = 0
J1(NaN) = NaN
fn Y1(x: f64): f64
Returns the order-one Bessel function of the second kind.
Special cases are:
Y1(+Inf) = 0
Y1(0) = -Inf
Y1(x < 0) = NaN
Y1(NaN) = NaN
fn Jn(mut n: int, mut x: f64): f64
Returns the order-n Bessel function of the first kind.
Special cases are:
Jn(n, ±Inf) = 0
Jn(n, NaN) = NaN
fn Yn(mut n: int, x: f64): f64
Returns the order-n Bessel function of the second kind.
Special cases are:
Yn(n, +Inf) = 0
Yn(n ≥ 0, 0) = -Inf
Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
Yn(n, x < 0) = NaN
Yn(n, NaN) = NaN
fn Ldexp(mut Frac: f64, mut Exp: int): f64
Is the inverse of Frexp. It returns Frac × 2**Exp.
Special cases are:
Ldexp(±0, Exp) = ±0
Ldexp(±Inf, Exp) = ±Inf
Ldexp(NaN, Exp) = NaN
fn Lgamma(mut x: f64): (Lgamma: f64, sign: int)
Returns the natural logarithm and sign (-1 or +1) of Gamma(x).
Special cases are:
Lgamma(+Inf) = +Inf
Lgamma(0) = Inf
Lgamma(-integer) = +Inf
Lgamma(-Inf) = -Inf
Lgamma(NaN) = NaN
fn Log(x: f64): f64
Returns the natural logarithm of x.
Special cases are:
Log(+Inf) = +Inf
Log(0) = -Inf
Log(x < 0) = NaN
Log(NaN) = NaN
fn Log1p(x: f64): f64
Returns the natural logarithm of 1 plus its argument x. It is more accurate than Log(1 + x) when x is near zero.
Special cases are:
Log1p(+Inf) = +Inf
Log1p(±0) = ±0
Log1p(-1) = -Inf
Log1p(x < -1) = NaN
Log1p(NaN) = NaN
fn Log10(x: f64): f64
Returns the decimal logarithm of x. The special cases are the same as for log.
fn Log2(x: f64): f64
Returns the binary logarithm of x. The special cases are the same as for log.
fn Logb(x: f64): f64
Returns the binary exponent of x.
Special cases are:
Logb(±Inf) = +Inf
Logb(0) = -Inf
Logb(NaN) = NaN
fn Ilogb(x: f64): int
Returns the binary exponent of x as an integer.
Special cases are:
Ilogb(±Inf) = i32.Max
Ilogb(0) = i32.Min
Ilogb(NaN) = i32.Max
fn Mod(x: f64, mut y: f64): f64
Returns the floating-point Remainder of x/y. The magnitude of the result is less than y and its sign agrees with that of x.
Special cases are:
Mod(±Inf, y) = NaN
Mod(NaN, y) = NaN
Mod(x, 0) = NaN
Mod(x, ±Inf) = x
Mod(x, NaN) = NaN
fn Modf(f: f64): (integer: f64, Frac: f64)
Returns integer and fractional floating-point numbers that sum to f. Both values have the same sign as f.
Special cases are:
Modf(±Inf) = ±Inf, NaN
Modf(NaN) = NaN, NaN
fn Nextafter32(x: f32, y: f32): (r: f32)
Returns the next representable f32 value after x towards y.
Special cases are:
NextAfter32(x, x) = x
NextAfter32(NaN, y) = NaN
NextAfter32(x, NaN) = NaN
fn Nextafter(x: f64, y: f64): (r: f64)
Returns the next representable f64 value after x towards y.
Special cases are:
NextAfter(x, x) = x
NextAfter(NaN, y) = NaN
NextAfter(x, NaN) = NaN
fn Pow(x: f64, y: f64): f64
Returns x**y, the base-x exponential of y.
Special cases are:
Pow(x, ±0) = 1 for any x
Pow(1, y) = 1 for any y
Pow(x, 1) = x for any x
Pow(NaN, y) = NaN
Pow(x, NaN) = NaN
Pow(±0, y) = ±Inf for y an odd integer < 0
Pow(±0, -Inf) = Inf
Pow(±0, +Inf) = +0
Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
Pow(±0, y) = ±0 for y an odd integer > 0
Pow(±0, y) = +0 for finite y > 0 and not an odd integer
Pow(-1, ±Inf) = 1
Pow(x, +Inf) = +Inf for |x| > 1
Pow(x, -Inf) = +0 for |x| > 1
Pow(x, Inf) = +0 for |x| < 1
Pow(x, -Inf) = +Inf for |x| < 1
Pow(+Inf, y) = +Inf for y > 0
Pow(+Inf, y) = +0 for y < 0
Pow(-Inf, y) = Pow(-0, -y)
Pow(x, y) = NaN for finite x < 0 and finite non-integer y
fn Pow10(n: int): f64
Returns 10**n, the base-10 exponential of n.
Special cases are:
Pow10(n) = 0 for n < -323
Pow10(n) = +Inf for n > 308
fn Remainder(mut x: f64, mut y: f64): f64
Returns the IEEE 754 floating-point Remainder of x/y.
Special cases are:
Remainder(±Inf, y) = NaN
Remainder(NaN, y) = NaN
Remainder(x, 0) = NaN
Remainder(x, ±Inf) = x
Remainder(x, NaN) = NaN
fn Signbit(x: f64): bool
Reports whether x is negative or negative zero.
fn Cos(mut x: f64): f64
Returns the cosine of the radian argument x.
Special cases are:
Cos(±Inf) = NaN
Cos(NaN) = NaN
fn Sin(mut x: f64): f64
Returns the sine of the radian argument x.
Special cases are:
Sin(±0) = ±0
Sin(±Inf) = NaN
Sin(NaN) = NaN
fn Sincos(mut x: f64): (Sin: f64, Cos: f64)
Returns Sin(x), Cos(x).
Special cases are:
Sincos(±0) = ±0, 1
Sincos(±Inf) = NaN, NaN
Sincos(NaN) = NaN, NaN
fn Sinh(mut x: f64): f64
Returns the hyperbolic sine of x.
Special cases are:
Sinh(±0) = ±0
Sinh(±Inf) = ±Inf
Sinh(NaN) = NaN
fn Cosh(x: f64): f64
Returns the hyperbolic cosine of x.
Special cases are:
Cosh(±0) = 1
Cosh(±Inf) = +Inf
Cosh(NaN) = NaN
fn Sqrt(x: f64): f64
Returns the square root of x.
Special cases are:
Sqrt(+Inf) = +Inf
Sqrt(±0) = ±0
Sqrt(x < 0) = NaN
Sqrt(NaN) = NaN
fn Tan(mut x: f64): f64
Returns the tangent of the radian argument x.
Special cases are:
Tan(±0) = ±0
Tan(±Inf) = NaN
Tan(NaN) = NaN
fn Tanh(x: f64): f64
Returns the hyperbolic tangent of x.
Special cases are:
Tanh(±0) = ±0
Tanh(±Inf) = ±1
Tanh(NaN) = NaN
fn F32Bits(f: f32): u32
Returns the IEEE 754 binary representation of f, with the sign bit of f and the result in the same bit position. F32Bits(F32FromBits(x)) == x
.
fn F32FromBits(b: u32): f32
Returns the floating-point number corresponding to the IEEE 754 binary representation b, with the sign bit of b and the result in the same bit position. F32FromBits(F32Bits(x)) == x
.
fn F64Bits(f: f64): u64
Returns the IEEE 754 binary representation of f, with the sign bit of f and the result in the same bit position. F64Bits(F64FromBits(x)) == x
.
fn f64FromBits(b: u64): f64
Returns the floating-point number corresponding to the IEEE 754 binary representation b, with the sign bit of b and the result in the same bit position. F64FromBits(F64Bits(x)) == x
.